extension | φ:Q→Aut N | d | ρ | Label | ID |
C22.1(C6×F5) = C3×D4.F5 | φ: C6×F5/C3×F5 → C2 ⊆ Aut C22 | 240 | 8 | C2^2.1(C6xF5) | 480,1053 |
C22.2(C6×F5) = C3×D10.D4 | φ: C6×F5/C6×D5 → C2 ⊆ Aut C22 | 120 | 4 | C2^2.2(C6xF5) | 480,279 |
C22.3(C6×F5) = C3×Dic5.D4 | φ: C6×F5/C6×D5 → C2 ⊆ Aut C22 | 240 | 4 | C2^2.3(C6xF5) | 480,285 |
C22.4(C6×F5) = C3×C23⋊F5 | φ: C6×F5/C6×D5 → C2 ⊆ Aut C22 | 120 | 4 | C2^2.4(C6xF5) | 480,291 |
C22.5(C6×F5) = C3×C23.F5 | φ: C6×F5/C6×D5 → C2 ⊆ Aut C22 | 120 | 4 | C2^2.5(C6xF5) | 480,293 |
C22.6(C6×F5) = C3×D5⋊M4(2) | φ: C6×F5/C6×D5 → C2 ⊆ Aut C22 | 120 | 4 | C2^2.6(C6xF5) | 480,1049 |
C22.7(C6×F5) = C3×D10.C23 | φ: C6×F5/C6×D5 → C2 ⊆ Aut C22 | 120 | 4 | C2^2.7(C6xF5) | 480,1052 |
C22.8(C6×F5) = C12×C5⋊C8 | central extension (φ=1) | 480 | | C2^2.8(C6xF5) | 480,280 |
C22.9(C6×F5) = C3×C20⋊C8 | central extension (φ=1) | 480 | | C2^2.9(C6xF5) | 480,281 |
C22.10(C6×F5) = C3×C10.C42 | central extension (φ=1) | 480 | | C2^2.10(C6xF5) | 480,282 |
C22.11(C6×F5) = C3×D10⋊C8 | central extension (φ=1) | 240 | | C2^2.11(C6xF5) | 480,283 |
C22.12(C6×F5) = C3×Dic5⋊C8 | central extension (φ=1) | 480 | | C2^2.12(C6xF5) | 480,284 |
C22.13(C6×F5) = C3×D10.3Q8 | central extension (φ=1) | 120 | | C2^2.13(C6xF5) | 480,286 |
C22.14(C6×F5) = C3×C23.2F5 | central extension (φ=1) | 240 | | C2^2.14(C6xF5) | 480,292 |
C22.15(C6×F5) = C6×D5⋊C8 | central extension (φ=1) | 240 | | C2^2.15(C6xF5) | 480,1047 |
C22.16(C6×F5) = C6×C4.F5 | central extension (φ=1) | 240 | | C2^2.16(C6xF5) | 480,1048 |
C22.17(C6×F5) = F5×C2×C12 | central extension (φ=1) | 120 | | C2^2.17(C6xF5) | 480,1050 |
C22.18(C6×F5) = C6×C4⋊F5 | central extension (φ=1) | 120 | | C2^2.18(C6xF5) | 480,1051 |
C22.19(C6×F5) = C2×C6×C5⋊C8 | central extension (φ=1) | 480 | | C2^2.19(C6xF5) | 480,1057 |
C22.20(C6×F5) = C6×C22.F5 | central extension (φ=1) | 240 | | C2^2.20(C6xF5) | 480,1058 |